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Fluctuating hydrodynamic models for supercooled liquids and development
of long relaxation times
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Two fluctuating hydrodynamic models for the supercooled liquid are considered. The self-consistent mode
coupling theory for the slow relaxation of density fluctuations are analyzed to explain the glassy dynamics. The
density correlation function decays to zero in the long-time limit with diffusive kernels which are identical in
both the models. The time scales introduced with the present formulation of the coupling of density fluctua-
tions and current fluctuations shows agreement with behavior of a wide range of simulations and experiments.
The renormalization of the various transport coefficients in the two models are also compared.
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INTRODUCTION short wavelengths. The analysis presented by these authors
demonstrates the absence of a sharp transition to an ideal
Nonlinear fluctuating hydrodynamic equations were usedlassy phase similar to the earlier work by Das and Ma-
[1_3] for Obtaining the mode Coup"ng models for the Super_zenko. Although the dynamiC transition is cut off there are
cooled liquid dynamics. In these models the transport coefSOme strong remnants of the glass transition singularity. In
ficients are obtained in terms of self-consistent expression@0th the versions of mode coupling theories, respectively
of the hydrodynamic correlation functions. This gives rise todescribed in Refd.2] and[11], the density correlation func-

a feedback mechanisd,5] for slow relaxation in the super- 10" has an asymptotic behavior given by the form

i -1
cooled liquid. In the self-consistent mode coupling models[z+'7(q’z)] , where the kernel(q,z) can be expressed

for glass transition the feedback effects from the terms in_self-consistently in terms of the hydrodynamic correlation

volving the slowly decaying density fluctuations are ana_functlons giving rise to a diffusive decay. This indicates that

. ) S ergodicity is restored over a time scale 0§(0,0). Indeed if
lyzed since they produce the dominant contribution at supery would self-consistently reduce to very small values, the

cooled dens.ities. In. Ref§2,6] analysis of.the flgctuating supercooled dynamics would be pushed to very long times.
hydrodynamic equations for the compressible fluid was dongyence the exact form of the kernel representing the cutoff

to show how ergodicity is restored in the system in the Verymechanism eliminating the glass transition singularity is im-

long-time limit. It was demonstrated that there is no sharpyorant, In Ref[8] this issue was considered through a self-
transition to an ideal glassy state due to the coupling betweegynsistent calculation. This demonstrated that the relaxation
_den5|ty_ fluctuations and current fluc_tl_Jatlons in the compressime increases by two to three orders of magnitude showing
ible fluid. The role of the nonlinearities are investigated by 4 change in the dynamics but did not give rise to any diverg-
introducing a velocity fields through the constraing= pv ing time scales around this mode coupling singularity. This
in the compressible fluid. This is essential in taking care olbehavior has been observed in computer simulations of
the 1p nonlinearities that appear in the equations of motionsimple liquids as well as for a wide class of systems called
[2,7]. Subsequently these models were exter{@e8] to in-  the fragile glasses through radiation experiments. The tem-
clude the structural effects by incorporating proper waveperatureT. [12,10,13 is a signature of the dynamic singu-
vector dependence and good agreement with computer simlarity due to mode coupling effects.
lation results were obtained. The theory demonstrated exist- In the work by SDD the role of the nonlinearities in the
ence of a characteristics temperatligghigher than the calo-  fluctuating hydrodynamic equations are investigated with the
rimetric glass transition temperatufig; such that within a underlying microscopic dynamics being constrained by the
narrow temperature range aroufglthere is a feezing out of detailed balance condition. The authors show that special
the large scale structural rearrangements involving collectiv@onlinearities of densitp and momentum field which ap-
motion of many molecules. At this temperature there is gpear in the continuity equation to maintain detailed balance,
qualitative change in the collective dynamics in the liquiddo eliminate a complete structural arrest that would have
although there is no sharp glass transition characterized by@ccurred if only coupling of density fluctuations were con-
diverging viscosity. The system still remains ergodic oversidered. In the present work we compare the results of the
long enough time scales. Ergodicity was also demonstratetivo models presented in Ref&] and[11] and demonstrate
[9] in the asymptotic dynamics obtained in similar modethat both the works gives the identical result for the final
coupling models obtained from microscopic approa¢hés relaxation process. We also analyze the two models to com-
In a subsequent work Schimitz, Dufty, and Dreereafter pare the renormalization of transport coefficients and sound
referred to as SDPhas also considered a self-consistentspeeds in the two models. We end the paper with a small
mode coupling theory for supercooled liquids extending it todiscussion.
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FLUCTUATING HYDRODYNAMICS manner in terms of the full correlation functions and is very
OF COMPRESSIBLE LIQUID useful in demonstrating the feedback mechanism that results
. . in slow relaxation at supercooled densities. The fully renor-
In the analysis by Das and Mazenko in Riff the set of malized theory of the hydrodynamic correlation functions are

hydrodynamic va-r|aE) les used are the ma;s Sler;ﬁt-yhe obtained interms of the self-energy matkixdefined through
momentum densityg, and the flow velocityv defined  he pyson equation

through the nonlinear constraint

1,2 ~—12 _ >

The equations of motion for the hydrodynamic variables ar
obtained using the well known Zwangig-Mdr4] formal-
ism and are valid for small and finite wavelengths. The equa
tion for p is given by

where G, refers to the matrix of correlation functions ob-
Sained from the equations of linearized hydrodynamics. The
main quantity of interest here is the density auto correlation
function whose fourier transform is defined as

L @ Gyp(at) = f d(x—x")e X 5p(x,1) 8p(X, 0)),
at
9
and that forg is the generalized nonlinear Navier-Stokeswhere the angular brackets refer to the average over the sta-
equation with thermal noise, tionary states. In Ref2] the following form for the Fourier-
29, Laplac transform oGpp(i,t) normalized with respect to its
= equal time value is obtained in the smalland w limit,
=PV, 2 iy
z+i19%T'R(q,2)
-2 j dx'Lij(x=x") 5F, +0;, ) naz= 2°—q°c*(q) +ig°TR(q,2)[z+i¥(q,2)]"

] . op(x") (10
whereF [p(X)] is the potential energy part of the effective Herec?(q)=[BmSq)] ! andI'R(q,z) is the renormalized
HamiltonianF defined[15] as longitudinal viscosity. Similarly the Laplac transform for the

transverse current fluctuatignormalized with respect to its

_ %f dBxg2(x)/ p(X) + F,. (4) equal time valugis given by

1
Following the usual forms common in the density functional $(A,2)= R (13)
: - - - z+iq°77(9,2)
theories,F, is taken as an expansion of an inhomogeneous
equilibrium liquid, where 77(q,2) is the renormalized shear viscosity. In the
formulation of the MSR type field theory the renormalized
(Bm)Fu[P(X)]:f dxp(x){In[ p(x)/po]—1},+ Find p]1, memory kernels on the right-hand si¢lRHS) of Egs. (10)

and (11) have the mode coupling contributions at the one

5) loop level, respectively, given by
where the first term is the ideal gas entropy term and the di
interaction ternt;,; to lowest order can be obtainédp to a 21~me _ f s P

> a2 > Q
Fint[p]: _ %J‘ d3Xd3X,C(2)(X—X/)5p(X)5p(X/), XC('C] k|)] Gpp(q kVt)Gpp(kit) (12)

(6) and
with 8p(x,t) = p(x,t) —p, and 8=1/kgT. c(x) is the equi- dk R
librium two particle correlation function for the liquid. For qzﬂmc(q,t)zkof W[c(k)—c(q—k)]zkz
an isotropic fluid the bare transport matti}g(i) is related to o )
the Gaussian nois®; through the fluctuation dissipation re- x(l—uZ)Gpp(q— k,t)G,,(k,t), (13
lation

wherex .= (28m*p,) ~* andu=g-k while g is the unit vec-

tor along the direction oﬁ.

In order to investigate the effects the nonlinearities in the The quantityy(q,z) on the RHS of Eq(10) arises from
hydrodynamic equations will have on the transport propertieshe coupling between the density fluctuations and current
of the fluid, a field theory of the Martin-Siggia-Ro&SR)  fluctuations in a compressible fluid. In the asymptotic limit
[16] type was used in Ref2]. The advantage of using the when the viscosity becomes large due to the feedback com-
MSR field theory here is that the renormalized expressioning from mode coupling contributions, the density autocor-
for the various quantities are obtained in a self-consistentelation function given by Eq.10) develops a pole at

(@i(X,1)O;(X",t"))=2kgTL;;(X) S(X—Xx") 8(t—t"). (7)
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FIG. 2. The one loop diagram contributing to the self-energy
34, due to the{pgip} vertex.
FIG. 1. The one loop diagram contributing to the self-energy

S
7]
density fluctuations, the following expression for the density
correlation function is obtained:
z+iy(q,z)=0. (14

| H . Qz(k) -1

n Ref. [2] it was demonstrated through the relati59 $(0,2)=Coy(0,2)=| 2+ —————| , (16)

that the quantityy(q,z) can be obtained in terms of the z+M>(q,2)

hydrodynamic correlation functions by analyzing the self- _ _

energy matrix elemen¥;;, introduced in Eq(8). The one whereQ =k[gm{Kk)]. The memory functioM is under-

loop diagrams for the self-enerdy; is shown in Fig. 1. stood to have a short-time part denoted doyin Ref. [11].
i

On evaluating these diagrams the followin self-consisteng|2 turns out to be identical to the expression Ior given in
. gt 9 . 9 . g.(10). In the simple model where only coupling of density
expression fory in terms of density and current correlation

functions is obtained fluctuations are considered there is a dynamic instability at a
' critical density beyond which the liquid freezes into a non-

dk ergodic phase with the density correlation function decaying
y(q,t)zJ'Z—s([ungg(q—R,t) to a nonzero value in the long-time limit. Thus, beyond a
po(27) critical density Eq(16) for a range ofy allows for a solution
+(1—Uf)G;g(d—Kt)]Gpp(R,t) with.a.nonzero set of values fayr(q,tﬂoo)=f(q)._ _
Similarly the decay of the transverse correlation function
+uu; Gy, (K1) Gy, (K=K, 1)), (15  Cag(q,2) or ¢(qg,z) given in Eq.(11) is determined by the

A R the memory functiorM 5(q,z) which is identical to the gen-
with definitionsu=K - G andu;=G(G—K)/|G—K| and the eralized shear \{iscosity given b3). Thus in the _models
superscriptd. and T, respectively, refer to longitudinal and Where all couplings between currents and density fluctua-
transverse parts of the corresponding quantities in the isotrdlons are ignored, identical results are obtained in both the
pic fluid. This self-consistent expression fpiwas also used Models of Ref[2] and Ref[11]. However, the difference in
in Ref. [8] for obtaining a close set of functional equations thelongitudinalviscosity kernels in the two models show up
for the density and current correlation functions. The time'vhen all the couplings between current and density fluctua-
scales of relaxation that followed from the numerical solu-fions are taken into account. This is dlscgss_ed below.
tion of these equations demonstrated good agreement with () Memory kernelM,: This is of o(q°) in the small
the computer simulation resulf47]. Here we compare the Wave vector limit. In the work by Das and Mazenko the

predictions of Refs[2,8] with that of Ref.[11]. similar quantity is obtained through t@g—p element of the
self-energy matrix introduced in E@8). This goes in the

renormalization of the sound speed. Indeed it was shown in
Ref.[2] at the one loop level the contributidty,/q is zero
in the smallg limit. The memory functiorM ; stands for the
correction to the sound speed in the finite wave vector or
In this section we discuss the results by SDD as presenteshort wavelength regime. Its contribution in the hydrody-
in Ref.[11] and compare them with the earlier works by Dasnamic limit is zero since a Gaussian free energy functional
and Mazenko. Following Ref11], the hydrodynamic corre- has been used in the analysis. The contributiokltocomes
lation functions are expressed in terms of the appropriatérom the diagram shown in Fig. 2. This is a consequence of
memory functions, given by Eq$9) to (13) cited therein. the vertex that appears in the density equation as a result of
We consider below memory functions!y,M;,M,, and detailed balance imposed on the microscopic dynamics.

M5 introduced in these expressions for analyzing the results (c) Memory kernelM,: This memory kernel determines
of these authors. the asymptotic decay of the density correlation function. For
(8 Memory kernelM, and M3: The renormalization of very long times which corresponds to small the density

longitudinal and shear viscosities of the supercooled liquicdtorrelation function develops a pole a& —M,(q,z) and
due to mode coupling effects are expressed, respectivelyhe dynamic instability showing the transition to a noner-
through the memory functiord, andM 3. The longitudinal — godic phase is now absent sindg,(0,0)#0. In fact M
viscosity is defined through the attenuation of the densityexpressed self-consistently in terms of the hydrodynamiccor-
auto correlation function. If we ignore nonlinearities appear-elation functions isdentical to the result obtained by Das
ing in the equations of motion due to coupling between denand Mazenko. Following Refll] Eq. (13) we can express
sity and momentum fields, and consider only those due t¢he kernelM, as

RESULTS FROM THE MODEL BY SDD
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P N I The earlier analysis by Das and Mazenko obtains an identical
Mo(d,2)=(27) f dte 'ZtJ ddA o5,(q:k,q—k) behavior for the density autocorrelation function. The self-
0 consistent expression fdvl, in terms of the density and
> > current correlation functions are shown toillenticalin the
X Cp(k,t)C(|g—K],1). 17

two models. This is a key result of this paper. However, the
Using the expressions fok matrix given in Ref[11] and quantitative behavior of the hydrodynamic correlation func-

the relation(15) we can simplify the above expressions ob-10NS can be determined through the solution of the self-
taining consistent mode coupling equations with proper mode cou-

pling vertex functions. In Ref8] this was done for the wave
Mo(q,2)=i¥(q,2). (18  vector dependent extension of the Das and Mazenko model

with a choice of the standard free energy functional. The
Thus the quantity , expressed self-consistently in terms of resulting expression for the renormalization of viscosity in
the hydrodynamic correlation functions identical to the  the analysis of Ref.8] is in agreement with other works].
result for the asymptotic decay of the density correlationln the model by SDD the mode coupling vertex, given by Eq.
function as obtained by Das and Mazenko. However, whenl9) for renormalizing the transport coefficients is different
the density and current Coup]ings are kept’ the memory ke[due to introduction of the new vertex function referred to as
nel M, in the model by SDD has the form U@ in the model in Ref[11], arising from the detailed
balance used in the model. The full quantitative implications

dk -~ . _ S of this can only be made by a numerical evaluation.
Mzz?\of W[{Q'k}s (k)+{aq-(q—k)}S (iii) In the Das and Mazenko analysis the role of the 1/
nonlinearities appearing in the equations were implemented
><(|Ci—|Z|)]2Gpp(a—|2.t)Gpp(lZ,t) (19) in the field theoretic analysis through the constrajrtpu.

The cutoff mechanism responsible for the absence of the
which is different from the result quoted in E€L2). When  sharp transition is a direct consequence of this. The role of
the current and density couplings are taken into account, i.ethe Jacobian function in the field theoretic analysis with the
the vertex functior @ is included, the mode coupling con- three fieldsg, v, andp and that its implication on the dy-
tributions to the transport coefficients amet identicaland ~ hamics is irrelevant was discussed in detail elsewhere by

this difference persists even in the smgland o limit. Mazenko and Ye¢7]. _ _
(iv) The expressiony(q,z) in Eqg. (10) in Ref. [2] was
DISCUSSION obtained through a nonperturbative analysis and taking the

hydrodynamic limit of smalfj andw. On the other hand, the

We have considered in detail here the two hydrodynamiavork by SDD starts from a set of hydrodynamic equations
models for supercooled liquids. The main conclusions are awhich is not invariant under Galilean transformations. But
follows: their analysis does not involve the consideration of the hy-

(i) If the density nonlinearites in the equations of motion drodynamic limit. This allows an extension of the theory into
are only considered, then the model by SDD reduces to théhe short length scales.
standard form, which is also ttggedependent generalization The absence of the sharp glass transition in the mode
of the Das and Mazenko model discussed in R&f .where  coupling models is linked to the fact that with the increase of
the result follows simply by ignoring nonhydrodynamic density, the kernely [2] or M, [11] does not self-
(higher inq) terms rather than picking up a certain set of consistently reduce to zero and the density correlation func-
nonlinearities in the equations of motion. This model con-tion always decays to zero in the long-time limit. Indeed
tains a dynamic instability which freezes the liquid into asuch an effect is also observed in a wide range of systems
nonergodic phase, characterized by diverging transport coeshowing a qualitative change in dynamics of the supercooled
ficients. liquid around a characteristics temperature higher than the

(i) Retaining the nonlinear terms coming from both thecalorimetric glass transition temperature although there is no
density fluctuations as well as current fluctuations, SDDsharp transition to an ideal glassy phase.however, gets
shows that the dynamics controlled by the detailed balancemall, indicating a two or three orders of magnitude rise in
eliminates the sharp transition into an ideal glassy phasthe value of transport coefficients. The present work estab-
mentioned above. Over very long-time scales the densityishes the exact equivalence of the time scales predicted in
correlation function develops a pole &g+M,(q,2)] L. two different hydrodynamic models for supercooled liquid.
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