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Two fluctuating hydrodynamic models for the supercooled liquid are considered. The self-consistent mode
coupling theory for the slow relaxation of density fluctuations are analyzed to explain the glassy dynamics. The
density correlation function decays to zero in the long-time limit with diffusive kernels which are identical in
both the models. The time scales introduced with the present formulation of the coupling of density fluctua-
tions and current fluctuations shows agreement with behavior of a wide range of simulations and experiments.
The renormalization of the various transport coefficients in the two models are also compared.
@S1063-651X~96!04807-6#

PACS number~s!: 64.70.Pf, 05.60.1w, 64.60.Cn

INTRODUCTION

Nonlinear fluctuating hydrodynamic equations were used
@1–3# for obtaining the mode coupling models for the super-
cooled liquid dynamics. In these models the transport coef-
ficients are obtained in terms of self-consistent expressions
of the hydrodynamic correlation functions. This gives rise to
a feedback mechanism@4,5# for slow relaxation in the super-
cooled liquid. In the self-consistent mode coupling models
for glass transition the feedback effects from the terms in-
volving the slowly decaying density fluctuations are ana-
lyzed since they produce the dominant contribution at super-
cooled densities. In Refs.@2,6# analysis of the fluctuating
hydrodynamic equations for the compressible fluid was done
to show how ergodicity is restored in the system in the very
long-time limit. It was demonstrated that there is no sharp
transition to an ideal glassy state due to the coupling between
density fluctuations and current fluctuations in the compress-
ible fluid. The role of the nonlinearities are investigated by
introducing a velocity fieldvW through the constraintgW 5rvW
in the compressible fluid. This is essential in taking care of
the 1/r nonlinearities that appear in the equations of motion
@2,7#. Subsequently these models were extended@6,8# to in-
clude the structural effects by incorporating proper wave
vector dependence and good agreement with computer simu-
lation results were obtained. The theory demonstrated exist-
ence of a characteristics temperatureTO higher than the calo-
rimetric glass transition temperatureTG such that within a
narrow temperature range aroundTo there is a feezing out of
the large scale structural rearrangements involving collective
motion of many molecules. At this temperature there is a
qualitative change in the collective dynamics in the liquid
although there is no sharp glass transition characterized by a
diverging viscosity. The system still remains ergodic over
long enough time scales. Ergodicity was also demonstrated
@9# in the asymptotic dynamics obtained in similar mode
coupling models obtained from microscopic approaches@10#.

In a subsequent work Schimitz, Dufty, and De~hereafter
referred to as SDD! has also considered a self-consistent
mode coupling theory for supercooled liquids extending it to

short wavelengths. The analysis presented by these authors
demonstrates the absence of a sharp transition to an ideal
glassy phase similar to the earlier work by Das and Ma-
zenko. Although the dynamic transition is cut off there are
some strong remnants of the glass transition singularity. In
both the versions of mode coupling theories, respectively
described in Refs.@2# and@11#, the density correlation func-
tion has an asymptotic behavior given by the form
@z1 ig(q,z)#21, where the kernelg(q,z) can be expressed
self-consistently in terms of the hydrodynamic correlation
functions giving rise to a diffusive decay. This indicates that
ergodicity is restored over a time scale of 1/g(0,0). Indeed if
g would self-consistently reduce to very small values, the
supercooled dynamics would be pushed to very long times.
Hence the exact form of the kernel representing the cutoff
mechanism eliminating the glass transition singularity is im-
portant. In Ref.@8# this issue was considered through a self-
consistent calculation. This demonstrated that the relaxation
time increases by two to three orders of magnitude showing
a change in the dynamics but did not give rise to any diverg-
ing time scales around this mode coupling singularity. This
behavior has been observed in computer simulations of
simple liquids as well as for a wide class of systems called
the fragile glasses through radiation experiments. The tem-
peratureTC @12,10,13# is a signature of the dynamic singu-
larity due to mode coupling effects.

In the work by SDD the role of the nonlinearities in the
fluctuating hydrodynamic equations are investigated with the
underlying microscopic dynamics being constrained by the
detailed balance condition. The authors show that special
nonlinearities of densityr and momentum fieldgW which ap-
pear in the continuity equation to maintain detailed balance,
do eliminate a complete structural arrest that would have
occurred if only coupling of density fluctuations were con-
sidered. In the present work we compare the results of the
two models presented in Refs.@2# and@11# and demonstrate
that both the works gives the identical result for the final
relaxation process. We also analyze the two models to com-
pare the renormalization of transport coefficients and sound
speeds in the two models. We end the paper with a small
discussion.
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FLUCTUATING HYDRODYNAMICS
OF COMPRESSIBLE LIQUID

In the analysis by Das and Mazenko in Ref.@2# the set of
hydrodynamic variables used are the mass densityr, the
momentum densitygW , and the flow velocityvW defined
through the nonlinear constraint

gW 5rvW . ~1!

The equations of motion for the hydrodynamic variables are
obtained using the well known Zwangig-Mori@14# formal-
ism and are valid for small and finite wavelengths. The equa-
tion for r is given by
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]t
52¹W •gW ~2!

and that forgW is the generalized nonlinear Navier-Stokes
equation with thermal noise,
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whereFu@r(x)# is the potential energy part of the effective
HamiltonianF defined@15# as

F5
1

2E d3xg2~x!/r~x!1Fu . ~4!

Following the usual forms common in the density functional
theories,Fu is taken as an expansion of an inhomogeneous
equilibrium liquid,

~bm!Fu@r~x!#5E dxr~x!$ ln@r~x!/ro#21%,1F int@r#,

~5!

where the first term is the ideal gas entropy term and the
interaction termF int to lowest order can be obtained~up to a
constant! as

F int@r#52
1

2mE d3xd3x8c~2!~x2x8!dr~x!dr~x8!,

~6!

with dr(x,t) 5 r(x,t)2ro andb51/kBT. c(x) is the equi-
librium two particle correlation function for the liquid. For
an isotropic fluid the bare transport matrixLi j (xW ) is related to
the Gaussian noiseQ i through the fluctuation dissipation re-
lation

^Q i~xW ,t !Q j~xW8,t8!&52kBTLi j ~xW !d~xW2xW8!d~ t2t8!. ~7!

In order to investigate the effects the nonlinearities in the
hydrodynamic equations will have on the transport properties
of the fluid, a field theory of the Martin-Siggia-Rose~MSR!
@16# type was used in Ref.@2#. The advantage of using the
MSR field theory here is that the renormalized expressions
for the various quantities are obtained in a self-consistent

manner in terms of the full correlation functions and is very
useful in demonstrating the feedback mechanism that results
in slow relaxation at supercooled densities. The fully renor-
malized theory of the hydrodynamic correlation functions are
obtained interms of the self-energy matrixS defined through
the Dyson equation

G21~qW ,v!5Go
21~qW ,v!2S~qW ,v!, ~8!

whereGo refers to the matrix of correlation functions ob-
tained from the equations of linearized hydrodynamics. The
main quantity of interest here is the density auto correlation
function whose fourier transform is defined as

Grr~q,t !5E d~xW2xW8!eiq
W
•~xW2xW8!^dr~xW ,t !dr~xW8,0!&,

~9!

where the angular brackets refer to the average over the sta-
tionary states. In Ref.@2# the following form for the Fourier-
Laplac transform ofGrr~xW,t! normalized with respect to its
equal time value is obtained in the smallq andv limit,

c~q,z!5
z1 iq2GR~q,z!

z22q2c2~q!1 iq2GR~q,z!@z1 ig~q,z!#
.

~10!

Herec2(q)5@bmS(q)#21 andGR(q,z) is the renormalized
longitudinal viscosity. Similarly the Laplac transform for the
transverse current fluctuation~normalized with respect to its
equal time value! is given by

f~q,z!5
1

z1 iq2hR~q,z!
, ~11!

wherehR(q,z) is the renormalized shear viscosity. In the
formulation of the MSR type field theory the renormalized
memory kernels on the right-hand side~RHS! of Eqs. ~10!
and ~11! have the mode coupling contributions at the one
loop level, respectively, given by

q2Gmc~q,t !5loE dkW

~2p!3
@$qŴ •kW%c~k!1$qŴ •~qW 2kW !%

3c~ uqW 2kW u!#2Grr~qW 2kW ,t !Grr~kW ,t ! ~12!

and

q2hmc~q,t !5loE dkW

~2p!3
@c~k!2c~qW 2kW !#2k2

3~12u2!Grr~qW 2kW ,t !Grr~kW ,t !, ~13!

wherelo5(2bm4ro)
21 andu5qŴ •kŴ while qŴ is the unit vec-

tor along the direction ofqW .
The quantityg(q,z) on the RHS of Eq.~10! arises from

the coupling between the density fluctuations and current
fluctuations in a compressible fluid. In the asymptotic limit
when the viscosity becomes large due to the feedback com-
ing from mode coupling contributions, the density autocor-
relation function given by Eq.~10! develops a pole at
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z1 ig~q,z!50. ~14!

In Ref. @2# it was demonstrated through the relation~6.59!
that the quantityg(q,z) can be obtained in terms of the
hydrodynamic correlation functions by analyzing the self-
energy matrix elementS v̂ i v̂j

introduced in Eq.~8!. The one

loop diagrams for the self-energyS v̂ i v̂j
is shown in Fig. 1.

On evaluating these diagrams the following self-consistent
expression forg in terms of density and current correlation
functions is obtained.

g~q,t !5E dkW

ro
2~2p!3

„@u1
2Ggg

L ~qW 2kW ,t !

1~12u1
2!Ggg

T ~qW 2kW ,t !#Grr~kW ,t !

1uu1Ggr~kW ,t !Ggr~kW2kW ,t !…, ~15!

with definitionsu[kŴ • qŴ and u15qŴ (qW 2kW )/uqW 2kW u and the
superscriptsL andT, respectively, refer to longitudinal and
transverse parts of the corresponding quantities in the isotro-
pic fluid. This self-consistent expression forg was also used
in Ref. @8# for obtaining a close set of functional equations
for the density and current correlation functions. The time
scales of relaxation that followed from the numerical solu-
tion of these equations demonstrated good agreement with
the computer simulation results@17#. Here we compare the
predictions of Refs.@2,8# with that of Ref.@11#.

RESULTS FROM THE MODEL BY SDD

In this section we discuss the results by SDD as presented
in Ref. @11# and compare them with the earlier works by Das
and Mazenko. Following Ref.@11#, the hydrodynamic corre-
lation functions are expressed in terms of the appropriate
memory functions, given by Eqs.~9! to ~13! cited therein.
We consider below memory functionsM0 ,M1 ,M2 , and
M3 introduced in these expressions for analyzing the results
of these authors.

~a! Memory kernelM2 andM3: The renormalization of
longitudinal and shear viscosities of the supercooled liquid
due to mode coupling effects are expressed, respectively,
through the memory functionsM2 andM3 . The longitudinal
viscosity is defined through the attenuation of the density
auto correlation function. If we ignore nonlinearities appear-
ing in the equations of motion due to coupling between den-
sity and momentum fields, and consider only those due to

density fluctuations, the following expression for the density
correlation function is obtained:

c~q,z![C00~q,z!5Fz1
V2~k!

z1M2~q,z!G
21

, ~16!

whereV5k/@bmS(k)#. The memory functionM2 is under-
stood to have a short-time part denoted bys in Ref. @11#.
M2 turns out to be identical to the expression forGR given in
Eq. ~10!. In the simple model where only coupling of density
fluctuations are considered there is a dynamic instability at a
critical density beyond which the liquid freezes into a non-
ergodic phase with the density correlation function decaying
to a nonzero value in the long-time limit. Thus, beyond a
critical density Eq.~16! for a range ofq allows for a solution
with a nonzero set of values forc(q,t→`)5 f (q).

Similarly the decay of the transverse correlation function
C33(q,z) or f(q,z) given in Eq.~11! is determined by the
the memory functionM3(q,z) which is identical to the gen-
eralized shear viscosity given by~13!. Thus in the models
where all couplings between currents and density fluctua-
tions are ignored, identical results are obtained in both the
models of Ref.@2# and Ref.@11#. However, the difference in
the longitudinalviscosity kernels in the two models show up
when all the couplings between current and density fluctua-
tions are taken into account. This is discussed below.

~b! Memory kernelM1: This is of o(q2) in the small
wave vector limit. In the work by Das and Mazenko the
similar quantity is obtained through theĝr2r element of the
self-energy matrix introduced in Eq.~8!. This goes in the
renormalization of the sound speed. Indeed it was shown in
Ref. @2# at the one loop level the contributionS ĝr /q is zero
in the smallq limit. The memory functionM1 stands for the
correction to the sound speed in the finite wave vector or
short wavelength regime. Its contribution in the hydrody-
namic limit is zero since a Gaussian free energy functional
has been used in the analysis. The contribution toM1 comes
from the diagram shown in Fig. 2. This is a consequence of
the vertex that appears in the density equation as a result of
detailed balance imposed on the microscopic dynamics.

~c! Memory kernelMo : This memory kernel determines
the asymptotic decay of the density correlation function. For
very long times which corresponds to smallz, the density
correlation function develops a pole atz52Mo(q,z) and
the dynamic instability showing the transition to a noner-
godic phase is now absent sinceMo(0,0)Þ0. In fact M0
expressed self-consistently in terms of the hydrodynamiccor-
relation functions isidentical to the result obtained by Das
and Mazenko. Following Ref.@11# Eq. ~13! we can express
the kernelMo as

FIG. 1. The one loop diagram contributing to the self-energy
S v̂ i v̂j

.

FIG. 2. The one loop diagram contributing to the self-energy
S ĝir

due to the$r̂gir% vertex.
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Mo~q,z!5~2p!23E
0

`

dte2 iztE dqW Labg~qW :kW ,qW 2kW !

3Cb~k,t !Cg~ uqW 2kW u,t !. ~17!

Using the expressions forL matrix given in Ref.@11# and
the relation~15! we can simplify the above expressions ob-
taining

Mo~q,z!5 ig~q,z!. ~18!

Thus the quantityM0 expressed self-consistently in terms of
the hydrodynamic correlation functions isidentical to the
result for the asymptotic decay of the density correlation
function as obtained by Das and Mazenko. However, when
the density and current couplings are kept, the memory ker-
nelM2 in the model by SDD has the form

M25loE dkW

~2p!3
@$qŴ •kW%S21~k!1$qŴ •~qW 2kW !%S21

3~ uqW 2kW u!] 2Grr~qW 2kW ,t !Grr~kW ,t ! ~19!

which is different from the result quoted in Eq.~12!. When
the current and density couplings are taken into account, i.e.,
the vertex functionU (2) is included, the mode coupling con-
tributions to the transport coefficients arenot identicaland
this difference persists even in the smallq andv limit.

DISCUSSION

We have considered in detail here the two hydrodynamic
models for supercooled liquids. The main conclusions are as
follows:

~i! If the density nonlinearites in the equations of motion
are only considered, then the model by SDD reduces to the
standard form, which is also theq-dependent generalization
of the Das and Mazenko model discussed in Ref.@8# where
the result follows simply by ignoring nonhydrodynamic
~higher in q) terms rather than picking up a certain set of
nonlinearities in the equations of motion. This model con-
tains a dynamic instability which freezes the liquid into a
nonergodic phase, characterized by diverging transport coef-
ficients.

~ii ! Retaining the nonlinear terms coming from both the
density fluctuations as well as current fluctuations, SDD
shows that the dynamics controlled by the detailed balance
eliminates the sharp transition into an ideal glassy phase
mentioned above. Over very long-time scales the density
correlation function develops a pole as@z1Mo(q,z)#

21.

The earlier analysis by Das and Mazenko obtains an identical
behavior for the density autocorrelation function. The self-
consistent expression forMo in terms of the density and
current correlation functions are shown to beidentical in the
two models. This is a key result of this paper. However, the
quantitative behavior of the hydrodynamic correlation func-
tions can be determined through the solution of the self-
consistent mode coupling equations with proper mode cou-
pling vertex functions. In Ref.@8# this was done for the wave
vector dependent extension of the Das and Mazenko model
with a choice of the standard free energy functional. The
resulting expression for the renormalization of viscosity in
the analysis of Ref.@8# is in agreement with other works@5#.
In the model by SDD the mode coupling vertex, given by Eq.
~19! for renormalizing the transport coefficients is different
due to introduction of the new vertex function referred to as
U (2) in the model in Ref.@11#, arising from the detailed
balance used in the model. The full quantitative implications
of this can only be made by a numerical evaluation.

~iii ! In the Das and Mazenko analysis the role of the 1/r
nonlinearities appearing in the equations were implemented
in the field theoretic analysis through the constraintgW 5rvW .
The cutoff mechanism responsible for the absence of the
sharp transition is a direct consequence of this. The role of
the Jacobian function in the field theoretic analysis with the
three fieldsgW , vW , andr and that its implication on the dy-
namics is irrelevant was discussed in detail elsewhere by
Mazenko and Yeo@7#.

~iv! The expressiong(q,z) in Eq. ~10! in Ref. @2# was
obtained through a nonperturbative analysis and taking the
hydrodynamic limit of smallq andv. On the other hand, the
work by SDD starts from a set of hydrodynamic equations
which is not invariant under Galilean transformations. But
their analysis does not involve the consideration of the hy-
drodynamic limit. This allows an extension of the theory into
the short length scales.

The absence of the sharp glass transition in the mode
coupling models is linked to the fact that with the increase of
density, the kernelg @2# or Mo @11# does not self-
consistently reduce to zero and the density correlation func-
tion always decays to zero in the long-time limit. Indeed
such an effect is also observed in a wide range of systems
showing a qualitative change in dynamics of the supercooled
liquid around a characteristics temperature higher than the
calorimetric glass transition temperature although there is no
sharp transition to an ideal glassy phase.g, however, gets
small, indicating a two or three orders of magnitude rise in
the value of transport coefficients. The present work estab-
lishes the exact equivalence of the time scales predicted in
two different hydrodynamic models for supercooled liquid.
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